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tion1.1 The problemComputer programs 
onstru
ted for the purpose of ben
hmarking 
lusters [referen
e otherrelated software℄ for the most part requiere the entire 
luster system to be available for thetests. This is all very �ne when a new system is assembled and has not yet been put intoprodu
tion. On
e the 
luster has been set in produ
tion status, system utilization may runbetween 80�100 per
ent, 24/7, with jobs in queue. Further 
hanges to the operating systemkernels, 
ompiler, or message passing software su
h as PVM or MPI [
ite these℄ 
annotbe 
onsistently evaluated. What is needed is a ben
hmarking tool whi
h does not requierethe entire 
luster to be available. Gmandel addresses this spe
i�
 problem in a novel way.[Also, remember to point out that the model is s
alable℄[for gmandel 1.4: �x input window, show equation being iterated, allow for s
aling ofgraphi
 window ℄The stru
ture of this paper is the following: In this introdu
tory se
tion we introdu
ethe main de�nitions related to Jaulia and Mandelbrot sets and their generalizations. Inse
ond se
tion we des
ribe the software developed to deal with generalized sets in a 
lusterenvironment. In third se
tion we invite the reader to take a journey into rarely exploredparts of generalized Mandelbrot and Julia sets, 
omputed quite e�
iently and pre
isely withour 
luster. Finally, in two appendi
es we 
hra
terize the region of interest, in the 
omplexplane, related with the generalizations of the Mandelbrot set.
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2 De�nitionsThe Julia set is 
omprised of the points on the 
omplex plane whose orbit never es
apes toin�nity upon the iteration xi+1 = x2
i + c, where i ∈ N and xi, c ∈ C.The Mandelbrot set 
omprises the points on the 
omplex plane whose orbit never es
apesto in�nity upon the iteration xi+1 = x2

i + x1, where i ∈ N and xi, c ∈ C.A generalized Mandelbrot set 
omprises the points on the 
omplex plane whose orbitnever es
apes to in�nity upon the iteration xi+1 = xq
i + x1, where i ∈ N, q ∈ N − {0, 1} and

xi, c ∈ C.An α-generalized Mandelbrot set 
omprises the points on the 
omplex plane whose orbitnever es
apes to in�nity upon the iteration xi+1 = αxq1

i + (1 − α)xq2

i + x1, where i ∈ N,
q1, q2 ∈ N − {0, 1}, α ∈ [0, 1] ⊂ R+ and xi, c ∈ C.Let us put the above notions in a more te
hni
al notation. A sequen
e of 
omplexnumbers (zn)n≥0 tends to in�nity if ∀C > 0 ∃nC ∈ N: n ≥ nC ⇒

√
zz = |zn| > C. In this
ase, let us write limn→+∞ zn = ∞. For any z0 ∈ C and r > 0 let D(z0, r) be the 
losed disk
entered at z0 with radius r: D(z0, r) =

{

z ∈ C

∣

∣

∣

∣

√

(z − z0)(z − z0) ≤ r

}.For any non-negative integer exponent q ∈ N and any 
omplex number c ∈ C, let
fqc : C → C be the map z 7→ zq + c. For any z0 ∈ C let Z(z0, q, c) = (Zn(z0, q, c))n≥0 be thesequen
e de�ned iteratively as Z0 = z0 and ∀n ∈ N: Zn+1 = fqc(Zn). The q-Mandelbrot set
entered at z0 is the set of 
omplex numbers c su
h that Z(z0, q, c) does not tend to in�nity:

Mq(z0) =

{

c ∈ C

∣

∣

∣

∣

lim
n→+∞

Zn(z0, q, c) 6= ∞
} (1)

M2(0) is the very well known Mandelbrot set, whi
h is a fra
tal in
luded in the disk D(0, 2).The q-Julia set shifted by c is the set of 
omplex numbers z0 su
h that Z(z0, q, c) does nottend to in�nity:
Jq(c) =

{

z0 ∈ C

∣

∣

∣

∣

lim
n→+∞

Zn(z0, q, c) 6= ∞
} (2)It 
an be seen that, for any integer exponent q ≥ 4, Mq(0) ⊂ D(0, 2

1

q−1 ), i.e. the q-Mandelbrot set 
entered at the origin is in
luded within the disk of radius 2
1

q−1 
entered alsoat the origin.In fa
t, as q → +∞, Mq(0) will approximate the unit disk D(0, 1).The supreme of the distan
es of points in Mq(0) to the origin are realized by the vertexesof a regular polygon:
Pqj = 2

1

q−1 exp [i(π + j
2π

q − 1

)]

, j = 0, . . . , q − 2 (3)and the minimum of the distan
es of points in the 
omplement of Mq(0) to the origin arerealized by the vertexes of a regular polygon:
pqj = rq exp [i(j

2π

q − 1

)]

, j = 0, . . . , q − 2 (4)2



(a) q = 5 (b) q = 6Figure 1: Annuli of interest in the generalized Mandelbrot sets.where rq ∈]0, 1[ is the radius of 
onvergen
e of the series given by equation. (7) in appendix A.Let Gq be the regular polygon with vertexes (Pqj)
q−2
j=0 and let gq be the regular polygonwith vertexes (pqj)

q−2
j=0. Gq is drawn within the bounding disk D(0, 2

1

q−1 ) whi
h 
ontains
Mq(0). gq is drawn within the disk D(0, rq) whi
h lies entirely in Mq(0). Gq and gq seemto be re�e
ted ea
h other, i.e. the vertex Pq0 lies in the real negative axis of the 
omplexplane while the vertex pq0 lies in the real positive axis. Thus the interesting part of Mq(0)lies within the annulus Aq = {z ∈ C| rq ≤ |z| ≤ 2

1

q−1}. This 
an be seen in the �gure 1, withodd and even values of q = 5 and q = 6.3 Parallel 
al
ulations3.1 The parallel algorithm and partitioning strategySin
e ea
h pixel on the fra
tal image is independent from its neighbors, a divide-and-
onquerme
hanism is best suited for the problem. The image is divided into 
olumns, and these
olumns are assigned to individual 
omputer nodes by means of message passing te
hniques.Ea
h individual 
omputer node then performs a se
ond division of the problem by means ofPOSIX threads so as to generate the requested number of lightweight pro
esses a
ting uponshared memory. In this manner the rows are partitioned by the separate threads a
ting uponthem. When any individual 
omputer node �nishes ea
h assigned 
olumn, a message withthe 
olumn results are posted to the pro
ess whi
h has 
ontrol of the graphi
 interfa
e.3.2 Communi
ation and syn
hronizationTo minimize the startup 
ommuni
ation, a single message blo
k is sent to ea
h remoteheavyweight pro
ess. In this message blo
k ea
h remote pro
ess 
hild learns the parametersof the graphi
al image to be 
al
ulated, the number of heavy weight siblings, the quantityof threads to use, and the individual 
hild identi�
ation number. With su
h identi�
ationnumber and the number of siblings, ea
h 
hild knows exa
tly whi
h 
olumns has to undertake.3



To return the 
al
ulated values and to build an image fragment with them, ea
h pro
essparent shall de�ne an array and dire
tly read into this memory devi
e the 
olumn ve
torsas they are sent by the 
hildren. The message identi�
ation will 
orrespond to the 
olumnnumber so that the parent will read them as soon as they are available without expe
tingto re
eive them in any parti
ular order. As soon as ea
h 
hild has �nished sending the
al
ulated 
olumns it will send an additional message whi
h 
ontains the total number of�oating point operations realized so that the parent pro
ess 
an tabulate the ben
hmarkMFLOPS.The initial message is sent 
oded as bytes, assuming a homogeneous 
luster 
onformation.The resultant ve
tor 
olumns are en
oded as integer values, and the number of �oating pointoperations as a long unsigned.As pointed out earlier, ea
h heavyweight 
hild further divides the problem by means ofthreads. Ea
h 
hild thread will solve only the rows assigned to it, whi
h it 
an 
al
ulate byexamining its own thread identi�
ation number and the amount of sibling threads whi
h willbe running. Sin
e the threads are a
ting on shared memory without any overlapping, ea
hthread stores the results obtained dire
tly into the ve
tor whi
h will be sent ba
k via messagepassing to the pro
ess in 
harge of generating the �nal image. In order to eliminate the needfor a mutex �whi
h signi�
antly deteriorates performan
e� in the tabulation of the numberof �oating point operations, ea
h thread stores the number of �oating point operations in alo
al variable whi
h will be returned to the parent as a referen
e upon exiting.With threads, there is one 
onsideration whi
h must be made to avoid a ra
e 
ondition.Within the stru
ture whi
h is sent to ea
h 
hild thread is the thread identi�
ation number.Sin
e this data stru
ture is de�ned within the parent thread, the memory lo
ation is shared.It is therefore imperative that the 
hild has time to read this data before the parent modi�esit for the next thread. This is done by introdu
ing a semaphore within the data stru
turewhi
h will be set by the 
hild thread after se
uring the data within its lo
al sta
k. This willallow the parent to 
reate the next thread. Again, this approa
h is signi�
antly faster thanusing operating system semaphores.3.3 Ben
hmarking 
lusters with full CPU utilizationThis is done using the dual message-passing/shared-memory feature of Gmandel. The Linuxoperating system does not distinguish between heavyweight pro
esses and lightweight pro-
esses while it assigns CPU time to di�erent pro
esses. If all pro
esses have the same priority,whi
h is generally the 
ase, it is su�
ient to request a high number of threads. In this mannerthe operating system will not distinguish between the threads and other pro
esses 
ompetingfor CPU time. For example, let us look at an individual 
omputer node before the Gmandelrun:1:30pm up 50 days, 5:46, 1 user, load average: 2.00, 2.00, 2.0035 pro
esses: 32 sleeping, 3 running, 0 zombie, 0 stoppedCPU0 states: 99.4% user, 0.1% system, 0.0% ni
e, 0.0% idleCPU1 states: 100.0% user, 0.0% system, 0.0% ni
e, 0.0% idleMem: 1028356K av, 894896K used, 133460K free, 10888K shrd, 606324K buffSwap: 2048276K av, 0K used, 2048276K free 69508K 
a
hedPID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND4



10957 mmartine 17 0 48364 47M 10704 R 99.9 4.7 1383m nw
hem.luis10956 mmartine 16 0 48648 47M 11324 R 99.7 4.7 1368m nw
hem.luis11863 eds
ott 9 0 948 948 764 R 0.1 0.0 0:00 topAnd during the Gmandel run:1:46pm up 50 days, 6:03, 1 user, load average: 12.73, 8.52, 6.0461 pro
esses: 34 sleeping, 27 running, 0 zombie, 0 stoppedCPU0 states: 99.0% user, 0.1% system, 0.0% ni
e, 0.0% idleCPU1 states: 100.0% user, 0.0% system, 0.0% ni
e, 0.0% idleMem: 1028356K av, 895104K used, 133252K free, 10888K shrd, 606324K buffSwap: 2048276K av, 0K used, 2048276K free 69544K 
a
hedPID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND12448 eds
ott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12449 eds
ott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12451 eds
ott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12455 eds
ott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12457 eds
ott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12446 eds
ott 19 0 784 784 532 R 10.7 0.0 0:02 mandel_pvm_a12450 eds
ott 20 0 784 784 532 R 10.7 0.0 0:02 mandel_pvm_a12447 eds
ott 18 0 784 784 532 R 9.8 0.0 0:02 mandel_pvm_a12452 eds
ott 20 0 784 784 532 R 7.8 0.0 0:02 mandel_pvm_a10956 mmartine 15 0 48648 47M 11324 R 6.8 4.7 1381m nw
hem.luis10957 mmartine 14 0 48364 47M 10704 R 5.8 4.7 1395m nw
hem.luis12453 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12454 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12456 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12458 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12459 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12460 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12461 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12462 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12463 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12464 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12465 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12466 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12467 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12468 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12469 eds
ott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_aWhi
h is an unequal allotment of CPU time whi
h bene�ts programs whi
h 
ombinemessage passing with shared memory, in Beowulf 
lass 
lusters.3.4 Performan
e model3.4.1 Shared memoryIn the 
al
ulation of many types of fra
tals, as in the 
ase of the Mandelbrot and Julia sets,the time it takes depends on several fa
tors. Over ea
h pixel of the image �or point of the5



grid� a series of iterations will be performed. The number of iterations per pixel is notknown beforehand. In fa
t, the number of iterations is the unknown to be solved to renderthe fra
tal image in 
olor. The time it takes one iteration on ea
h pixel is 
onstant, sin
e itonly depends on the number of �oating point operations performed and the pro
essor speed.This number of �oating point operations per iteration, whi
h we shall 
all c, determines a
omputation time t = c/f where f is the number of �oating point operations per se
ond(FLOPS) that the pro
essor in question is 
apable of realizing.For a given grid determined by the sele
ted 
oordinates upon the 
omplex plane, thereexists a fra
tion α of points for whi
h it 
annot be determined that the orbit es
apes aftera 
ertain number of iterations.Let L = {L1, L2, L3, . . .} be an in
reasing sequen
e of integer indexes. Let α = {α1, α2, α3, . . .}be the sequen
e of proportions of elements whose orbit does not es
ape for ea
h entry inthe sequen
e L. Then as Li → ∞, there exists a limit value α su
h that αi → α. For anypoints whose orbital sequen
e es
apes, we have that for almost all i the number of iterationsis stri
tly less than Li, and for those whose orbit does not es
ape the number 
an be rea
hed
Li. Therefore the 
omputation time is

t ≤ αicLi

f
+

(1 − αi)cLi

f
.And the time to 
al
ulate any point in the grid is less than or equal to cLi

f
. The maximumtime for the limit α > 0 is cwhLi

f
, where w × h are the grid dimensions.It 
an be seen that the value of α varies a

ording to the region of the 
omplex planethat is being examined, thus parameter α 
annot be known beforehand. On the other hand,the parameters w and h remain 
onstant while generating the fra
tal image. Therefore theonly parameter that 
an vary is Li, to resolve areas with more detail 
lose to the border ofthe Mandelbrot set.With respe
t to the shared memory 
omponent of Gmandel, all threads a
t upon thesame spa
e of memory. For this segment of 
al
ulation there exists a fra
tion of pixelswhose orbit does not es
ape. To ea
h thread there 
orresponds an αi whi
h indi
ates thefra
tion of points whose orbit does not es
ape. If ea
h pro
essor has an equivalent numberof points, then the α 
orresponding to L will be α =

∑

i αi, and the 
omputation time willbe determined by the pro
essor with the highest value for αi, being this time t ≤ αicL
f
.Analyzing the sour
e 
ode for the Mandelbrot set, it is easy to determine that c = 8 is the
ount of the �oating point instru
tions. Analyzing the results that were generated in a twopro
essor SMP 
omputer, and ignoring run times whi
h were too short, we obtain the resultsshown in table 1 where the value of the highest αi is also tabulated (sin
e this determinesthe a

eleration). To a
hieve the maximum a

eleration, the ideal number of pro
essors isequivalent the the maximum of w y h, being that if it is w, the partitioning should be doneby 
olumns and if it is h the partitioning should be by rows. But sin
e any useful fra
talimage should have at least a 300 pixel width, a SMP 
omputer whi
h 
ould provide themaximum a

eleration would have to have 300 pro
essors �whi
h is a ma
hine that is verydi�
ult to 
ome about. This shows that the shared memory approa
h 
an only be thoughtof as a partial solution to the problem of fra
tal image generation and that further workmust be done along the lines of message passing between di�erent 
omputers.6



L serial 2 threads a

eleration αmax3200 11 6 1.8 0.5556400 21 13 1.6 0.62512800 42 28 1.5 0.66725600 85 51 1.7 0.58851200 170 83 2.0 0.500Table 1: Values of a

eleration rates with respe
t to L.3.4.2 Message passingThe message passing approa
h is to do a double partitioning, one by 
olumns and one byrows. The message passing partition is done along the 
olumns of the grid. Ea
h remote PVMpro
ess will do the 
al
ulations and send the results to the parent PVM pro
ess to 
onformthe �nal image. Also, ea
h remote PVM pro
ess will do a shared memory partitioning alongthe rows of ea
h 
olumn. This implies w messages of length 4h, using 32 bit integers. Thetime lost to laten
y will be given by wλ. The time lost due to data length will be 4hβ, where
β is the bandwidth. The 
omputation time will be therefore marked o� by:

t ≤ wλ + 4hβ +
ᾱcLwh

fN
,where N is the number of PVM nodes and ᾱ is the maximum fra
tion of points whose orbitdoes not es
ape for any of the remote PVM pro
esses.Sin
e w and h remain 
onstant, and λ and β are 
onstants that depend upon the hardware,we 
an write the generalizes 
onstants:

k1 = wλ + 4hβ

k2 =
whc

f
,with whi
h the mark-o� equation for 
omputation time be
omes:

t ≤ k1 +
k2Lᾱmax

N
.Nevertheless ea
h remote PVM pro
ess makes private use of shared memory to take advan-tage of the fa
t that they may be SMP nodes with two or more pro
essors available. Thusthe 
omputation time fa
tor be
omes:

t ≤ k1 +
k2Lαmax

nN
,where αmax refers to the maximum fra
tion of points whose orbit does not es
ape that
orresponds to the threads for ea
h PVM pro
ess and n i the number of pro
essors availableat ea
h 
omputer. With the results obtained on a Beowulf 
lass 
luster at the IMP (Mexi
anInstitute of Petroleum) 
onformed by 125 dual Pentium-3 � 1 GHz 
onne
ted by swit
hed7



L time in se
onds a

eleration αmax pro
essors25600 6 14.2 0.070 2051200 10 17.0 0.059 20102400 20 17.0 0.059 20204800 40 17.0 0.059 2025600 2 42.5 0.024 8051200 3 56.7 0.018 80102400 7 48.6 0.021 80204800 12 56.7 0.018 8025600 1 85 0.012 14051200 2 85 0.012 140102400 4 85 0.012 140204800 7 97 0.010 140Table 2: Values of a

eleration rates.Gigabit Ethernet, we obtained the following results with the values shown at table 2 for αmax.For the message passing s
enario with PVM, the optimum 
on�guration is with remote SMPnodes. The number of 
olumns would 
orrespond to the width of the array, w, and the numberof pro
essors on ea
h SMP node would equal the number of rows, h. A 
on�guration of thisnature would be extremely di�
ult to a
hieve. Nonetheless, the parameters of Gmandel 
anbe moved to a

ommodate any number of remote PVM nodes with any number of pro
essorsby node. This is done by toggling the values of remote heavyweight pro
esses and threadsper heavyweight pro
ess.4 A voyage into the seldom explored Mandelbrot4.1 The generalized Mandelbrot setThe images in �gure 2 
orrespond to the generalization of the Mandelbrot set. They referto the exponents q = 2 through q = 9, plus q = 13. One detail to noti
e is that the numberof bulbs grows. In the 
ase where q = 2, there is one large bulb, while with q = 3 there aretwo large bulbs. It is easy to see that the number of large bulbs will equal q − 1. Anotherinteresting detail is with the butt. The number of butts in
rease with q and is equal to q−1.But there is always a butt on the positive x-axis, whi
h progressively gets smaller. Whathappens when q in
reases without bound? In �gure 3 we may take a look at q = 30, 120, 1200.What's happening? The generalized Mandelbrot set tends to the unit 
ir
le as was pointedat the end of se
tion 1. And we must also re
all the Mandelbrot is further tied to the 
ir
lewith the appearan
e of the irrational number π. This number, whi
h represents the ratioof the diameter to the 
ir
umferen
e of a 
ir
le, appears in di�erent manner, as shown byDave Boll [2, 4℄, and proved by Aaron Klebano� [11℄. This further ties the Mandelbrot set,and spe
i�
ally the generalized Mandelbrot set, to an alternate de�nition of the 
on
ept of a
ir
le. This is so be
ause the 
ir
umferen
e is not really smooth, but 
an be as smooth as we8



Figure 2: Generalized Mandelbrot sets for q ∈ {2, . . . , 9, 13}.

Figure 3: Generalized Mandelbrot sets for q ∈ {30, 120, 1200}.
9



Figure 4: Closest views at apploximatiosn of the unit 
ir
le.want it to be. This is nature's way to make 
ir
les sin
e the 
ir
umferen
e must eventually
ome down to atoms.But what does the smooth part of the Mandelbrot �
ir
le� (q = 1200) looks like on en-han
ement? A 
loser look 
an be taken at �gure 4, sequentially zooming in on the smoothestpart of the graph. Whi
h kind of reminds us of a gas bubbling through a liquid, 
ompletewith the bubbles bursting with a splash. Figure 5 displays two zooms at the splash. Andthen zoom in for two looks at the 
loudy part are displayed on �gure 6 Who would everguess that what looks like a 
ir
le is really what you observe above? Maybe only those whowork in quantum 
hemistry and who know there are no de�nite borders between atoms inmatter, only ele
tron 
louds.4.2 The generalized Julia SetJust as with the Mandelbrot set it is possible with the software to alter the exponent on theJulia iteration formula and generate interesting images. The two images shown on �gure 7
orrespond to a Julia set with q = 5. and the two images on �gure 8 
orrespond to a Juliasets with q = 13.4.3 The alpha generalized Mandelbrot setThe Alpha generalized Mandelbrot set also produ
es some very interesting images. Thetwo images of �gure 9 
orrespond to an α = 50, q = (100, 2)-fra
tal. Or zooming into the
α = 50, q = (5000, 2)-fra
tal image, the four images shown at �gure 10 are obtained. Andeven further with the three images on �gure 11.

10



Figure 5: Two zooms at the splash.

Figure 6: Two looks at the 
loudy part.
11



Figure 7: Julia set with q = 5.

Figure 8: Julia set with q = 13
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Figure 9: An α = 50, q = (100, 2)-fra
tal.

Figure 10: Zooming the α = 50, q = (5000, 2)-fra
tal image.
13



Figure 11: Further zooming.

Figure 12: Details of the a α = 50, q = (2, 1129)-fra
tal.4.4 Statisti
s 
al
ulationMany of the above images 
an be 
al
ulated within reasonable time on a single 
omputerrunning Linux or FreeBSD. But some of the images take too long. For ea
h of the two imagesin �gure 12, for example, whi
h represent details of the a α = 50, q = (2, 1129)-fra
tal, the
omputation time is more than twenty minutes on a Pentium-IV at 1.8 GHz, while usingthe PVM version of Gmandel with 100 dual Pentium-3 
omputers 
onne
ted by a Gigabitswit
h, the image generation is 
ut down to only 11 se
onds. While in the future pro
essorspeeds will most 
ertainly be able to mat
h su
h performan
e, in the meantime the use of a
omputer 
luster allows a peek at the fra
tals to be generated on future generation desktop
omputers.
14
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e Z(0, q, c)Let q ∈ N be an integer number greater than 1.For ea
h n ∈ N let pqn : c 7→ Zn(0, q, c) be the map that gives the n-th term in Mandelbrotsequen
e in terms of c, as de�ned in se
tion 1.Remark 1 pqn 
an be expressed as a polynomial in c of degree qn of the form
pqn(c) =

qn
−1

q−1
∑

i=0

Kq,n,1+i(q−1)c
1+i(q−1) ∈ N[c] (5)
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Thus pqn(c) has qn−1
q−1

+ 1 non-null 
oe�
ients.Proof. Let us prove it by indu
tion on n.Base 
ase. For n = 0 we have pq0(c) = c, whi
h is 
learly of the form (5) with Kq01 = 1.Indu
tive 
ase. Let n > 0 and suppose that equation. (5) holds for n− 1. Let us prove it for
n. We observe that the addition of q numbers 
ongruent with 1 modulus (q − 1), i.e. of theform 1 + ij(q − 1), j = 1, . . . , q, is of the form

∑

j

(1 + ij(q − 1)) = q +

(

∑

j

ij

)

(q − 1) = 1 +

(

1 +
∑

j

ij

)

(q − 1)i.e. it is also 
ongruent with 1 modulus (q − 1). Thus by expanding (pq,n−1(c))
q + c we getan expression of pqn(c) of the form (5).Remark 2 The 
oe�
ients (Kq,n,1+i(q−1)

)
qn
−1

q−1

i=0

an be 
al
ulated re
ursively:

Kqn1 = 1

Kq,n,1+k(q−1) =
∑

{

q
∏

j=1

Kq,n−1,1+ij(q−1)

∣

∣

∣

∣

∣

q
∑

j=1

ij = k − 1

} (6)Proof. It follows just by expanding pq,n(c) = (pq,n−1(c))
q + c.Remark 3 For every integer q ≥ 2, and every n, m ∈ N, if m ≥ n then Kq,n,1+n(q−1) =

Kq,n,1+m(q−1). In other words, the n-th polynomial �xes the value of the n-th 
oe�
ient inall subsequent polynomials.Thus, if the sequen
e {Zn(0, q, c)}n≥0 is 
onvergent its limit value 
an be expressed by theseries:
S(q, c) =

∑

n≥0

Kq,n,1+n(q−1)c
1+n(q−1) (7)Remark 4 The number rq introdu
ed in eq. (4) is the radius of 
onvergen
e of series S(q, c)in eq. (7). The sequen
e {rq}q≥2 starts with the value r2 = 1

4
, is in
reasing and besides

limq→+∞ rq = 1.In table 3 we sket
h a few approximated values in the sequen
e {rq}q≥2, obtained from our
al
ulations of the 
orresponding q-Mandelbrot set.B Cal
ulation of radii rqWhen q = 2, the minimum 
ir
le whi
h is 
ontained entirely within the Mandelbrot set isdetermined by a real number r2 = 0.25, indeed the point (0.25,0) is the 
losest to the originin the border of M2. As the order of the generalized Mandelbrot set is in
reased, a sequen
e16



q rq sq2 0.25 0.253 0.38490 0.14814810 0.696837 0.038742100 0.945003 0.0036971000 0.992116 0.00036820000 0.999455 0.000018Table 3: Some values of rq and sq.of real numbers appears whi
h determines the maximum 
ir
le 
ontained within the set. Theratio of this 
ir
le 
an be expressed in the form rq = s
1

q−1

q . On the other hand, the radiusof the minimum 
ir
le 
ontaining the set is determined by the term 2
1

q−1 . Sin
e there aroseindeed the unit roots, as the order of q in
reases the verti
es at the border within a distan
eof rq to the origin on the 
omplex plane form a regular (q − 1)-gon. The table 3 indi
atessome values of rq and sq. Sin
e every positive real number has at least one real and positive
(q − 1)-th root, a spike re�e
ting the minimum value of rq always appears on the positivereal axis. When q = 2 there is only one spike. When q = 3, two spikes 
orresponding tothe square roots of s3 show a symmetry with respe
t to the origin. On q = 4, the threespikes 
orrespond to the three 
ube roots of s4. In general, there always will be q − 1 spikes,symmetri
ally pla
ed around the origin. Sin
e the distan
e to ea
h of these to the origin isthe same, it is su�
ient to analyze the behavior of the spike on the positive real axis. Thissimpli�es the problem greatly sin
e we move from a sequen
e in C to R.Let us examine what happens when q → ∞. There are two 
ases. Case 1 is when x0 ≥ 1,and 
ase 2 is when 0 < x0 < 1.Case 1: x0 ≥ 1. x1 = limq→∞(x0)

q + x0 = ∞. Nothing more needs to be said.Case 2: 0 < x0 < 1. 1
n

= x0 : n > 1. x1 = limq→∞( 1
n
)q + 1

n
= 1

n
. By indu
tion

xi = 1
n
∀i ≥ 0. But 1

n
< 1 < ∞, therefore the sequen
e 
onverges for all values of x0 < 1.This implies that the limit of the Mandelbrot set when the exponential q → ∞ is nothingless than the unit 
ir
le on the 
omplex plane.
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