The Gmandel parallel software

Edscott Wilson Garcia
edscott@imp.mx
Programa de Matematicas Aplicadas y Computacion
Instituto Mexicano del Petroleo
México

December 3, 2009

Abstract

Keywords. Benchmark, cluster, fractal, Mandelbrot, Julia.

1 Introduction

1.1 The problem

Computer programs constructed for the purpose of benchmarking clusters [reference other
related software] for the most part requiere the entire cluster system to be available for the
tests. This is all very fine when a new system is assembled and has not yet been put into
production. Once the cluster has been set in production status, system utilization may run
between 80-100 percent, 24/7, with jobs in queue. Further changes to the operating system
kernels, compiler, or message passing software such as PVM or MPI [cite these| cannot
be consistently evaluated. What is needed is a benchmarking tool which does not requiere
the entire cluster to be available. Gmandel addresses this specific problem in a novel way.
[Also, remember to point out that the model is scalable]

[for gmandel 1.4: fiz input window, show equation being iterated, allow for scaling of
graphic window|

The structure of this paper is the following: In this introductory section we introduce
the main definitions related to Jaulia and Mandelbrot sets and their generalizations. In
second section we describe the software developed to deal with generalized sets in a cluster
environment. In third section we invite the reader to take a journey into rarely explored
parts of generalized Mandelbrot and Julia sets, computed quite efficiently and precisely with
our cluster. Finally, in two appendices we chracterize the region of interest, in the complex
plane, related with the generalizations of the Mandelbrot set.

2 Definitions

The Julia set is comprised of the points on the complex plane whose orbit never escapes to
infinity upon the iteration z;.; = 2? + ¢, where ¢ € N and z;,c € C.

The Mandelbrot set comprises the points on the complex plane whose orbit never escapes
to infinity upon the iteration z; ., = z? + z;, where i € N and z;,c € C.

A generalized Mandelbrot set comprises the points on the complex plane whose orbit
never escapes to infinity upon the iteration z;y; = z! + 1, where i € N, ¢ € N —{0,1} and
x;,c € C.

An a-generalized Mandelbrot set comprises the points on the complex plane whose orbit
never escapes to infinity upon the iteration x;1; = az! + (1 — a)x¥ + z;, where i € N,
1,920 € N—{0,1}, a € [0,1] C Rt and z;,c € C.

Let us put the above notions in a more technical notation. A sequence of complex
numbers (z,), -, tends to infinity if VC > 0 Inc € N: n > ne = /Zz = |z,| > C. In this
case, let us write lim,, ., 2, = co. For any 2y € C and r > 0 let D(z,7) be the closed disk

centered at zy with radius r: D(zp,7) = {z eC ’\/(2 —20)(z — 29) < r}.

For any non-negative integer exponent ¢ € N and any complex number ¢ € C, let
fqe : € — C be the map z +— 29+ c. For any 25 € C let Z(29,q,¢) = (Zn(20,4¢,¢)),>, be the
sequence defined iteratively as Zy = zp and Vn € N: Z, 11 = f,.(Z,). The q-Mandelbrot set
centered at zp is the set of complex numbers ¢ such that Z(zg, ¢, c) does not tend to infinity:

M,(z) = {c eC

n1—1>1:iI-1c>o Zn(z0,q,¢) # oo} (1)

M>(0) is the very well known Mandelbrot set, which is a fractal included in the disk D(0, 2).
The g-Julia set shifted by c is the set of complex numbers z, such that Z(z, ¢, c) does not
tend to infinity:

Jy(c) = {zo eC ngrfw Zn(20,q,¢) # oo} (2)

It can be seen that, for any integer exponent ¢ > 4, M,(0) C D(O,Zfz%l), ie. the ¢-

Mandelbrot set centered at the origin is included within the disk of radius 9271 centered also
at the origin.

In fact, as ¢ — 400, M,(0) will approximate the unit disk D(0,1).

The supreme of the distances of points in M,(0) to the origin are realized by the vertexes
of a regular polygon:

1 2
qu:2q—1exp[i(7r—|—jq_ﬂl)}, j=0,...,q—2 (3)

and the minimum of the distances of points in the complement of M,(0) to the origin are
realized by the vertexes of a regular polygon:

. 2w ‘
qu:’I“lep|:’L(j)}, j=0,...,q—2 (4)

qg—1

(a) g=5 (b) ¢ =6

Figure 1: Annuli of interest in the generalized Mandelbrot sets.

where r, €]0, 1] is the radius of convergence of the series given by equation. (7) in appendix A.
Let G, be the regular polygon with vertexes (qu)?;g and let g, be the regular polygon

1
with vertexes (qu)g;g. G, is drawn within the bounding disk D(0,24-1) which contains
M,(0). g, is drawn within the disk D(0,7,) which lies entirely in M,(0). G, and g, seem
to be reflected each other, i.e. the vertex P, lies in the real negative axis of the complex
plane while the vertex py lies in the real positive axis. Thus the interesting part of A/,(0)

lies within the annulus A, = {z € C| r, < |z| < 24_i1} This can be seen in the figure 1, with
odd and even values of ¢ =5 and ¢ = 6.

3 Parallel calculations

3.1 The parallel algorithm and partitioning strategy

Since each pixel on the fractal image is independent from its neighbors, a divide-and-conquer
mechanism is best suited for the problem. The image is divided into columns, and these
columns are assigned to individual computer nodes by means of message passing techniques.
Each individual computer node then performs a second division of the problem by means of
POSIX threads so as to generate the requested number of lightweight processes acting upon
shared memory. In this manner the rows are partitioned by the separate threads acting upon
them. When any individual computer node finishes each assigned column, a message with
the column results are posted to the process which has control of the graphic interface.

3.2 Communication and synchronization

To minimize the startup communication, a single message block is sent to each remote
heavyweight process. In this message block each remote process child learns the parameters
of the graphical image to be calculated, the number of heavy weight siblings, the quantity
of threads to use, and the individual child identification number. With such identification
number and the number of siblings, each child knows exactly which columns has to undertake.

To return the calculated values and to build an image fragment with them, each process
parent shall define an array and directly read into this memory device the column vectors
as they are sent by the children. The message identification will correspond to the column
number so that the parent will read them as soon as they are available without expecting
to receive them in any particular order. As soon as each child has finished sending the
calculated columns it will send an additional message which contains the total number of
floating point operations realized so that the parent process can tabulate the benchmark
MFLOPS.

The initial message is sent coded as bytes, assuming a homogeneous cluster conformation.
The resultant vector columns are encoded as integer values, and the number of floating point
operations as a long unsigned.

As pointed out earlier, each heavyweight child further divides the problem by means of
threads. Each child thread will solve only the rows assigned to it, which it can calculate by
examining its own thread identification number and the amount of sibling threads which will
be running. Since the threads are acting on shared memory without any overlapping, each
thread stores the results obtained directly into the vector which will be sent back via message
passing to the process in charge of generating the final image. In order to eliminate the need
for a mutex —which significantly deteriorates performance— in the tabulation of the number
of floating point operations, each thread stores the number of floating point operations in a
local variable which will be returned to the parent as a reference upon exiting.

With threads, there is one consideration which must be made to avoid a race condition.
Within the structure which is sent to each child thread is the thread identification number.
Since this data structure is defined within the parent thread, the memory location is shared.
It is therefore imperative that the child has time to read this data before the parent modifies
it for the next thread. This is done by introducing a semaphore within the data structure
which will be set by the child thread after securing the data within its local stack. This will
allow the parent to create the next thread. Again, this approach is significantly faster than
using operating system semaphores.

3.3 Benchmarking clusters with full CPU utilization

This is done using the dual message-passing/shared-memory feature of Gmandel. The Linux
operating system does not distinguish between heavyweight processes and lightweight pro-
cesses while it assigns CPU time to different processes. If all processes have the same priority,
which is generally the case, it is sufficient to request a high number of threads. In this manner
the operating system will not distinguish between the threads and other processes competing
for CPU time. For example, let us look at an individual computer node before the Gmandel
run:

1:30pm up 50 days, 5:46, 1 user, load average: 2.00, 2.00, 2.00

35 processes: 32 sleeping, 3 running, O zombie, O stopped

CPUO states: 99.4}, user, 0.1} system, 0.0% nice, 0.0% idle

CPU1 states: 100.0% user, 0.0% system, 0.0% nice, 0.0% idle

Mem: 1028356K av, 894896K used, 133460K free, 10888K shrd, 606324K buff
Swap: 2048276K av, OK used, 2048276K free 69508K cached

PID USER PRI NI SIZE RSS SHARE STAT %CPU MEM TIME COMMAND

10957 mmartine 17 O 48364 47M 10704 R 99.9 4.7 1383m nwchem.luis
10956 mmartine 16 O 48648 47M 11324 R 99.7 4.7 1368m nwchem.luis
11863 edscott 9 0 948 948 764 R 0.1 0.0 0:00 top

And during the Gmandel run:

1:46pm up 50 days, 6:03, 1 user, load average: 12.73, 8.52, 6.04

61 processes: 34 sleeping, 27 running, O zombie, O stopped

CPUO states: 99.0% user, 0.1} system, 0.0% nice, 0.0% idle

CPU1 states: 100.0% user, 0.0% system, 0.0% nice, 0.0% idle

Mem: 1028356K av, 895104K used, 133252K free, 10888K shrd, 606324K buff
Swap: 2048276K av, OK used, 2048276K free 69544K cached

PID USER PRI NI SIZE RSS SHARE STAT JCPU /MEM TIME COMMAND

12448 edscott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a
12449 edscott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a
12451 edscott 20 O 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a
12455 edscott 20 O 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a
12457 edscott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a
12446 edscott 19 0 784 784 532 R 10.7 0.0 0:02 mandel_pvm_a
12450 edscott 20 0 784 784 532 R 10.7 0.0 0:02 mandel_pvm_a
12447 edscott 18 0 784 784 532 R 9.8 0.0 0:02 mandel_pvm_a

12452 edscott 20 O 784 784 532 R 7.8 0.0 0:02 mandel_pvm_a

10956 mmartine 15 O 48648 47M 11324 R 6.8 4.7 1381m nwchem.luis
10957 mmartine 14 0 48364 47M 10704 R 5.8 4.7 1395m nwchem.luis

12453 edscott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12454 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12456 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12458 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12459 edscott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12460 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12461 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12462 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12463 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12464 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12465 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12466 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12467 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12468 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a
12469 edscott 20 O 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a

Which is an unequal allotment of CPU time which benefits programs which combine
message passing with shared memory, in Beowulf class clusters.

3.4 Performance model
3.4.1 Shared memory

In the calculation of many types of fractals, as in the case of the Mandelbrot and Julia sets,
the time it takes depends on several factors. Over each pixel of the image —or point of the

grid— a series of iterations will be performed. The number of iterations per pixel is not
known beforehand. In fact, the number of iterations is the unknown to be solved to render
the fractal image in color. The time it takes one iteration on each pixel is constant, since it
only depends on the number of floating point operations performed and the processor speed.
This number of floating point operations per iteration, which we shall call ¢, determines a
computation time t = ¢/f where f is the number of floating point operations per second
(FLOPS) that the processor in question is capable of realizing.

For a given grid determined by the selected coordinates upon the complex plane, there
exists a fraction a of points for which it cannot be determined that the orbit escapes after
a certain number of iterations.

Let L = {L4, Lo, L3, ...} be an increasing sequence of integer indexes. Let o = {ay, o, a3, . . .

be the sequence of proportions of elements whose orbit does not escape for each entry in
the sequence L. Then as L; — oo, there exists a limit value « such that o; — «. For any
points whose orbital sequence escapes, we have that for almost all ¢ the number of iterations
is strictly less than L;, and for those whose orbit does not escape the number can be reached
L;. Therefore the computation time is

O[Z‘CLZ' (]_ — O[Z‘)CLZ‘
t < =+ .
f f

And the time to calculate any point in the grid is less than or equal to

time for the limit o > 0 is ““T}‘Li, where w x h are the grid dimensions.

It can be seen that the value of « varies according to the region of the complex plane
that is being examined, thus parameter a cannot be known beforehand. On the other hand,
the parameters w and h remain constant while generating the fractal image. Therefore the
only parameter that can vary is L;, to resolve areas with more detail close to the border of
the Mandelbrot set.

With respect to the shared memory component of Gmandel, all threads act upon the
same space of memory. For this segment of calculation there exists a fraction of pixels
whose orbit does not escape. To each thread there corresponds an «; which indicates the
fraction of points whose orbit does not escape. If each processor has an equivalent number
of points, then the « corresponding to L will be & =). a;, and the computation time will
be determined by the processor with the highest value for «;, being this time ¢t < @<L,

Analyzing the source code for the Mandelbrot set, it is easy to determine that ¢ = 8 is the
count of the floating point instructions. Analyzing the results that were generated in a two
processor SMP computer, and ignoring run times which were too short, we obtain the results
shown in table 1 where the value of the highest «; is also tabulated (since this determines
the acceleration). To achieve the maximum acceleration, the ideal number of processors is
equivalent the the maximum of w y h, being that if it is w, the partitioning should be done
by columns and if it is A the partitioning should be by rows. But since any useful fractal
image should have at least a 300 pixel width, a SMP computer which could provide the
maximum acceleration would have to have 300 processors —which is a machine that is very
difficult to come about. This shows that the shared memory approach can only be thought
of as a partial solution to the problem of fractal image generation and that further work
must be done along the lines of message passing between different computers.

CTLZ' . The maximum

L | serial | 2 threads | acceleration | o4z
3200 11 6 1.8 0.555
6400 21 13 1.6 0.625

12800 42 28 1.5 0.667
25600 85 51 1.7 0.588
51200 170 83 2.0 0.500

Table 1: Values of acceleration rates with respect to L.

3.4.2 Message passing

The message passing approach is to do a double partitioning, one by columns and one by
rows. The message passing partition is done along the columns of the grid. Each remote PVM
process will do the calculations and send the results to the parent PVM process to conform
the final image. Also, each remote PVM process will do a shared memory partitioning along
the rows of each column. This implies w messages of length 4h, using 32 bit integers. The
time lost to latency will be given by wA. The time lost due to data length will be 4h3, where
[is the bandwidth. The computation time will be therefore marked off by:

acLwh
fN 7

t <wA+4hp +

where N is the number of PVM nodes and & is the maximum fraction of points whose orbit
does not escape for any of the remote PVM processes.

Since w and h remain constant, and A and (3 are constants that depend upon the hardware,
we can write the generalizes constants:

whe
k:Z == Ta

with which the mark-off equation for computation time becomes:

k2 L@maz

t <k + N

Nevertheless each remote PVM process makes private use of shared memory to take advan-
tage of the fact that they may be SMP nodes with two or more processors available. Thus
the computation time factor becomes:

k:ZLamaJ:

t<ki+———

>~ h1 + TLN ’
where «,,,, refers to the maximum fraction of points whose orbit does not escape that
corresponds to the threads for each PVM process and n i the number of processors available
at each computer. With the results obtained on a Beowulf class cluster at the IMP (Mexican
Institute of Petroleum) conformed by 125 dual Pentium-3 @ 1 GHz connected by switched

L | time in seconds | acceleration | qu,q. | processors
25600 6| 14.2 0.070 20
51200 10 | 17.0 0.059 20

102400 20 | 17.0 0.059 20
204800 40 | 17.0 0.059 20
25600 2| 42.5 0.024 80
51200 31 56.7 0.018 80
102400 7| 48.6 0.021 80
204800 12 | 56.7 0.018 80
25600 1|85 0.012 140
51200 2|85 0.012 140
102400 4|85 0.012 140
204800 7197 0.010 140

Table 2: Values of acceleration rates.

Gigabit Ethernet, we obtained the following results with the values shown at table 2 for a4,
For the message passing scenario with PVM, the optimum configuration is with remote SMP
nodes. The number of columns would correspond to the width of the array, w, and the number
of processors on each SMP node would equal the number of rows, h. A configuration of this
nature would be extremely difficult to achieve. Nonetheless, the parameters of Gmandel can
be moved to accommodate any number of remote PVM nodes with any number of processors
by node. This is done by toggling the values of remote heavyweight processes and threads
per heavyweight process.

4 A voyage into the seldom explored Mandelbrot

4.1 The generalized Mandelbrot set

The images in figure 2 correspond to the generalization of the Mandelbrot set. They refer
to the exponents ¢ = 2 through ¢ = 9, plus ¢ = 13. One detail to notice is that the number
of bulbs grows. In the case where ¢ = 2, there is one large bulb, while with ¢ = 3 there are
two large bulbs. Tt is easy to see that the number of large bulbs will equal ¢ — 1. Another
interesting detail is with the butt. The number of butts increase with ¢ and is equal to ¢ — 1.
But there is always a butt on the positive z-axis, which progressively gets smaller. What
happens when ¢ increases without bound? In figure 3 we may take a look at ¢ = 30, 120, 1200.
What’s happening? The generalized Mandelbrot set tends to the unit circle as was pointed
at the end of section 1. And we must also recall the Mandelbrot is further tied to the circle
with the appearance of the irrational number 7. This number, which represents the ratio
of the diameter to the circumference of a circle, appears in different manner, as shown by
Dave Boll [2, 4], and proved by Aaron Klebanoff [11|. This further ties the Mandelbrot set,
and specifically the generalized Mandelbrot set, to an alternate definition of the concept of a
circle. This is so because the circumference is not really smooth, but can be as smooth as we

Figure 2: Generalized Mandelbrot sets for ¢ € {2,...,9,13}.

Figure 3: Generalized Mandelbrot sets for ¢ € {30,120, 1200}.

Figure 4: Closest views at apploximatiosn of the unit circle.

want it to be. This is nature’s way to make circles since the circumference must eventually
come down to atoms.

But what does the smooth part of the Mandelbrot “circle” (¢ = 1200) looks like on en-
hancement? A closer look can be taken at figure 4, sequentially zooming in on the smoothest
part of the graph. Which kind of reminds us of a gas bubbling through a liquid, complete
with the bubbles bursting with a splash. Figure 5 displays two zooms at the splash. And
then zoom in for two looks at the cloudy part are displayed on figure 6 Who would ever
guess that what looks like a circle is really what you observe above? Maybe only those who
work in quantum chemistry and who know there are no definite borders between atoms in
matter, only electron clouds.

4.2 The generalized Julia Set

Just as with the Mandelbrot set it is possible with the software to alter the exponent on the
Julia iteration formula and generate interesting images. The two images shown on figure 7
correspond to a Julia set with ¢ = 5. and the two images on figure 8 correspond to a Julia
sets with ¢ = 13.

4.3 The alpha generalized Mandelbrot set

The Alpha generalized Mandelbrot set also produces some very interesting images. The
two images of figure 9 correspond to an o = 50, ¢ = (100, 2)-fractal. Or zooming into the
a = 50,q = (5000, 2)-fractal image, the four images shown at figure 10 are obtained. And
even further with the three images on figure 11.

10

Figure 5: Two zooms at the splash.

Figure 6: Two looks at the cloudy part.

11

Figure 7: Julia set with ¢ = 5.

Figure 8: Julia set with ¢ = 13

12

Figure 9: An o = 50, ¢ = (100, 2)-fractal.

Figure 10: Zooming the o = 50, ¢ = (5000, 2)-fractal image.

Figure 12: Details of the a o = 50, ¢ = (2, 1129)-fractal.

4.4 Statistics calculation

Many of the above images can be calculated within reasonable time on a single computer
running Linux or FreeBSD. But some of the images take too long. For each of the two images
in figure 12, for example, which represent details of the a a = 50, ¢ = (2, 1129)-fractal, the
computation time is more than twenty minutes on a Pentium-IV at 1.8 GHz, while using
the PVM version of Gmandel with 100 dual Pentium-3 computers connected by a Gigabit
switch, the image generation is cut down to only 11 seconds. While in the future processor
speeds will most certainly be able to match such performance, in the meantime the use of a
computer cluster allows a peek at the fractals to be generated on future generation desktop
computers.

14

References

[1] Alfeld, P., The Mandelbrot Set,
http://www.math.utah.edu/~“alfeld/math/mandelbrot/mandelbrot.html

[2] Boll, D. Pi and the Mandelbrot set, http://www.frii.com/~dboll/mandel.html

[3] Devaney, R. L. (ed.) Complex Analytic Dynamics: The Mathematics Behind the Man-
delbrot and Julia Sets, American Mathematical Society, Providence, 1994.

[4] Edgar, G., Pi and the Mandelbrot set, http://www.math.ohio-state.edu/~edgar/piand.html

[5] Falconer, K., Fractal Geometry: Mathematical Foundations and Applications. John Wi-
ley & Sons, 1990.

[6] Falconer, K., Techniques in Fractal Geometry. John Wiley & Sons, 1997.

[7] Fatou, P., Sur I'Itération des fonctions transcendentes entiéres, Acta Math. 47 (1926),
337-370.

[8] Feder, J., Fractals. Plenum Press, 1988.

[9] Gardner, M., Penrose Tiles to Trapdoor Ciphers, W.H.Freeman and Co., NY, 1989.
[10] Julia, G., Tteration des Applications Fonctionelles, J. Math. Pures Appl. (1918), 47-245.
[11] Klebanoff, A. 7 in the Mandelbrot Set, http://www.frii.com/~dboll/mandel.pdf
[12] Mandelbrot, B., The Fractal Geometry of Nature, Freeman Co., San Francisco, 1982.

[13] Pesin, Y., Dimension Theory in Dynamical Systems: Contemporary Views and Appli-
cations, Chicago Lectures in Mathematics, Chicago University Press, 1997.

[14] Wilson, E. , Gmandel, http://gmandel.sf.net/

A Some remarks on the sequence Z(0, ¢, ¢)

Let ¢ € N be an integer number greater than 1.
For each n € Nlet p,, : ¢ — Z,(0, ¢, ¢) be the map that gives the n-th term in Mandelbrot
sequence in terms of ¢, as defined in section 1.

Remark 1 p,, can be expressed as a polynomial in c of degree ¢ of the form

7'L

pqn Z q,n,1+i(q— 1 1+zq 2 GN[] (5)

15

Thus p,,(c) has % + 1 non-null coefficients.
Proof. Let us prove it by induction on n.
Base case. For n = 0 we have p,(c) = ¢, which is clearly of the form (5) with Ko, = 1.

Inductive case. Let n > 0 and suppose that equation. (5) holds for n — 1. Let us prove it for
n.

We observe that the addition of ¢ numbers congruent with 1 modulus (¢ — 1), i.e. of the
form 1+4;(¢—1),j=1,...,q, is of the form

S +ig-1)=q+ (Z) (-1 =1+ (HZZ;) (G- 1)

i.e. it is also congruent with 1 modulus (¢ — 1). Thus by expanding (p,,.—1(c))? + ¢ we get
an expression of p,,(c) of the form (5). n

n_q

Remark 2 The coefficients (qu,lﬂ(q,l)):‘l:? can be calculated recursively:

anl — 1
q q
Konitka-n = Y {H Kon 114,01 | D15 =k =1 } (6)
j=1 j=1
Proof. It follows just by expanding p,.(¢) = (pgn-1(¢c))? + c. n

Remark 3 For every integer ¢ > 2, and every n,m € N, if m > n then Ky, 14ng-1) =
Ky ni+m(g—1)- In other words, the n-th polynomial fizes the value of the n-th coefficient in
all subsequent polynomials.

Thus, if the sequence {Z,(0,q,c)},~, is convergent its limit value can be expressed by the
series:

S(Q) C) = Z Kq,n,1+n(q—1)cl+n(q_1) (7)

n>0

Remark 4 The number r, introduced in eq. (4) is the radius of convergence of series S(gq, c)
in eq. (7). The sequence {Tq}q>2 starts with the value ro = i, s increasing and besides
limg_ 1 orq = 1. -

In table 3 we sketch a few approximated values in the sequence {rq}q>2, obtained from our
calculations of the corresponding ¢g-Mandelbrot set. -
B Calculation of radii r,

When ¢ = 2, the minimum circle which is contained entirely within the Mandelbrot set is
determined by a real number 7, = 0.25, indeed the point (0.25,0) is the closest to the origin
in the border of M,. As the order of the generalized Mandelbrot set is increased, a sequence

16

‘ q ‘ Tq ‘ Sq ‘
210.25 0.25

3 10.38490 | 0.148148

10 | 0.696837 | 0.038742

100 | 0.945003 | 0.003697

1000 | 0.992116 | 0.000368

20000 | 0.999455 | 0.000018

Table 3: Some values of r, and s,.

of real numbers appears which determines the maximum circle contained within the set. The
1

ratio of this circle can be expressed in the form r, = s¢~'. On the other hand, the radius
of the minimum circle containing the set is determined by the term 2a-1. Since there arose
indeed the unit roots, as the order of ¢ increases the vertices at the border within a distance
of r, to the origin on the complex plane form a regular (¢ — 1)-gon. The table 3 indicates
some values of r, and s,. Since every positive real number has at least one real and positive
(¢ — 1)-th root, a spike reflecting the minimum value of 7, always appears on the positive
real axis. When ¢ = 2 there is only one spike. When ¢ = 3, two spikes corresponding to
the square roots of s3 show a symmetry with respect to the origin. On ¢ = 4, the three
spikes correspond to the three cube roots of s4. In general, there always will be ¢ — 1 spikes,
symmetrically placed around the origin. Since the distance to each of these to the origin is
the same, it is sufficient to analyze the behavior of the spike on the positive real axis. This
simplifies the problem greatly since we move from a sequence in C to R.

Let us examine what happens when ¢ — co. There are two cases. Case 1 is when 2y > 1,
and case 2 is when 0 < zg < 1.

Case 1: zg > 1. o1 = limy_,oo(20)? + 29 = 00. Nothing more needs to be said.

Case 2: 0 < xo < 1. % =x9:n>1 x = hmq_,oo()4 + % By induction
x; =+ =Vi > 0. But 1 < 1 < oo, therefore the sequence converges for all values of zg < 1.

ThlS implies that the limit of the Mandelbrot set when the exponential ¢ — o0 is nothing
less than the unit circle on the complex plane.

17

