
The Gmandel parallel softwareEdsott Wilson Garíaedsott�imp.mxPrograma de Matemátias Apliadas y ComputaiónInstituto Mexiano del PetróleoMéxioDeember 3, 2009AbstratKeywords. Benhmark, luster, fratal, Mandelbrot, Julia.1 Introdution1.1 The problemComputer programs onstruted for the purpose of benhmarking lusters [referene otherrelated software℄ for the most part requiere the entire luster system to be available for thetests. This is all very �ne when a new system is assembled and has not yet been put intoprodution. One the luster has been set in prodution status, system utilization may runbetween 80�100 perent, 24/7, with jobs in queue. Further hanges to the operating systemkernels, ompiler, or message passing software suh as PVM or MPI [ite these℄ annotbe onsistently evaluated. What is needed is a benhmarking tool whih does not requierethe entire luster to be available. Gmandel addresses this spei� problem in a novel way.[Also, remember to point out that the model is salable℄[for gmandel 1.4: �x input window, show equation being iterated, allow for saling ofgraphi window ℄The struture of this paper is the following: In this introdutory setion we introduethe main de�nitions related to Jaulia and Mandelbrot sets and their generalizations. Inseond setion we desribe the software developed to deal with generalized sets in a lusterenvironment. In third setion we invite the reader to take a journey into rarely exploredparts of generalized Mandelbrot and Julia sets, omputed quite e�iently and preisely withour luster. Finally, in two appendies we hraterize the region of interest, in the omplexplane, related with the generalizations of the Mandelbrot set.
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2 De�nitionsThe Julia set is omprised of the points on the omplex plane whose orbit never esapes toin�nity upon the iteration xi+1 = x2
i + c, where i ∈ N and xi, c ∈ C.The Mandelbrot set omprises the points on the omplex plane whose orbit never esapesto in�nity upon the iteration xi+1 = x2

i + x1, where i ∈ N and xi, c ∈ C.A generalized Mandelbrot set omprises the points on the omplex plane whose orbitnever esapes to in�nity upon the iteration xi+1 = xq
i + x1, where i ∈ N, q ∈ N − {0, 1} and

xi, c ∈ C.An α-generalized Mandelbrot set omprises the points on the omplex plane whose orbitnever esapes to in�nity upon the iteration xi+1 = αxq1

i + (1 − α)xq2

i + x1, where i ∈ N,
q1, q2 ∈ N − {0, 1}, α ∈ [0, 1] ⊂ R+ and xi, c ∈ C.Let us put the above notions in a more tehnial notation. A sequene of omplexnumbers (zn)n≥0 tends to in�nity if ∀C > 0 ∃nC ∈ N: n ≥ nC ⇒

√
zz = |zn| > C. In thisase, let us write limn→+∞ zn = ∞. For any z0 ∈ C and r > 0 let D(z0, r) be the losed diskentered at z0 with radius r: D(z0, r) =

{

z ∈ C

∣

∣

∣

∣

√

(z − z0)(z − z0) ≤ r

}.For any non-negative integer exponent q ∈ N and any omplex number c ∈ C, let
fqc : C → C be the map z 7→ zq + c. For any z0 ∈ C let Z(z0, q, c) = (Zn(z0, q, c))n≥0 be thesequene de�ned iteratively as Z0 = z0 and ∀n ∈ N: Zn+1 = fqc(Zn). The q-Mandelbrot setentered at z0 is the set of omplex numbers c suh that Z(z0, q, c) does not tend to in�nity:

Mq(z0) =

{

c ∈ C

∣

∣

∣

∣

lim
n→+∞

Zn(z0, q, c) 6= ∞
} (1)

M2(0) is the very well known Mandelbrot set, whih is a fratal inluded in the disk D(0, 2).The q-Julia set shifted by c is the set of omplex numbers z0 suh that Z(z0, q, c) does nottend to in�nity:
Jq(c) =

{

z0 ∈ C

∣

∣

∣

∣

lim
n→+∞

Zn(z0, q, c) 6= ∞
} (2)It an be seen that, for any integer exponent q ≥ 4, Mq(0) ⊂ D(0, 2

1

q−1 ), i.e. the q-Mandelbrot set entered at the origin is inluded within the disk of radius 2
1

q−1 entered alsoat the origin.In fat, as q → +∞, Mq(0) will approximate the unit disk D(0, 1).The supreme of the distanes of points in Mq(0) to the origin are realized by the vertexesof a regular polygon:
Pqj = 2

1

q−1 exp [i(π + j
2π

q − 1

)]

, j = 0, . . . , q − 2 (3)and the minimum of the distanes of points in the omplement of Mq(0) to the origin arerealized by the vertexes of a regular polygon:
pqj = rq exp [i(j

2π

q − 1

)]

, j = 0, . . . , q − 2 (4)2



(a) q = 5 (b) q = 6Figure 1: Annuli of interest in the generalized Mandelbrot sets.where rq ∈]0, 1[ is the radius of onvergene of the series given by equation. (7) in appendix A.Let Gq be the regular polygon with vertexes (Pqj)
q−2
j=0 and let gq be the regular polygonwith vertexes (pqj)

q−2
j=0. Gq is drawn within the bounding disk D(0, 2

1

q−1 ) whih ontains
Mq(0). gq is drawn within the disk D(0, rq) whih lies entirely in Mq(0). Gq and gq seemto be re�eted eah other, i.e. the vertex Pq0 lies in the real negative axis of the omplexplane while the vertex pq0 lies in the real positive axis. Thus the interesting part of Mq(0)lies within the annulus Aq = {z ∈ C| rq ≤ |z| ≤ 2

1

q−1}. This an be seen in the �gure 1, withodd and even values of q = 5 and q = 6.3 Parallel alulations3.1 The parallel algorithm and partitioning strategySine eah pixel on the fratal image is independent from its neighbors, a divide-and-onquermehanism is best suited for the problem. The image is divided into olumns, and theseolumns are assigned to individual omputer nodes by means of message passing tehniques.Eah individual omputer node then performs a seond division of the problem by means ofPOSIX threads so as to generate the requested number of lightweight proesses ating uponshared memory. In this manner the rows are partitioned by the separate threads ating uponthem. When any individual omputer node �nishes eah assigned olumn, a message withthe olumn results are posted to the proess whih has ontrol of the graphi interfae.3.2 Communiation and synhronizationTo minimize the startup ommuniation, a single message blok is sent to eah remoteheavyweight proess. In this message blok eah remote proess hild learns the parametersof the graphial image to be alulated, the number of heavy weight siblings, the quantityof threads to use, and the individual hild identi�ation number. With suh identi�ationnumber and the number of siblings, eah hild knows exatly whih olumns has to undertake.3



To return the alulated values and to build an image fragment with them, eah proessparent shall de�ne an array and diretly read into this memory devie the olumn vetorsas they are sent by the hildren. The message identi�ation will orrespond to the olumnnumber so that the parent will read them as soon as they are available without expetingto reeive them in any partiular order. As soon as eah hild has �nished sending thealulated olumns it will send an additional message whih ontains the total number of�oating point operations realized so that the parent proess an tabulate the benhmarkMFLOPS.The initial message is sent oded as bytes, assuming a homogeneous luster onformation.The resultant vetor olumns are enoded as integer values, and the number of �oating pointoperations as a long unsigned.As pointed out earlier, eah heavyweight hild further divides the problem by means ofthreads. Eah hild thread will solve only the rows assigned to it, whih it an alulate byexamining its own thread identi�ation number and the amount of sibling threads whih willbe running. Sine the threads are ating on shared memory without any overlapping, eahthread stores the results obtained diretly into the vetor whih will be sent bak via messagepassing to the proess in harge of generating the �nal image. In order to eliminate the needfor a mutex �whih signi�antly deteriorates performane� in the tabulation of the numberof �oating point operations, eah thread stores the number of �oating point operations in aloal variable whih will be returned to the parent as a referene upon exiting.With threads, there is one onsideration whih must be made to avoid a rae ondition.Within the struture whih is sent to eah hild thread is the thread identi�ation number.Sine this data struture is de�ned within the parent thread, the memory loation is shared.It is therefore imperative that the hild has time to read this data before the parent modi�esit for the next thread. This is done by introduing a semaphore within the data struturewhih will be set by the hild thread after seuring the data within its loal stak. This willallow the parent to reate the next thread. Again, this approah is signi�antly faster thanusing operating system semaphores.3.3 Benhmarking lusters with full CPU utilizationThis is done using the dual message-passing/shared-memory feature of Gmandel. The Linuxoperating system does not distinguish between heavyweight proesses and lightweight pro-esses while it assigns CPU time to di�erent proesses. If all proesses have the same priority,whih is generally the ase, it is su�ient to request a high number of threads. In this mannerthe operating system will not distinguish between the threads and other proesses ompetingfor CPU time. For example, let us look at an individual omputer node before the Gmandelrun:1:30pm up 50 days, 5:46, 1 user, load average: 2.00, 2.00, 2.0035 proesses: 32 sleeping, 3 running, 0 zombie, 0 stoppedCPU0 states: 99.4% user, 0.1% system, 0.0% nie, 0.0% idleCPU1 states: 100.0% user, 0.0% system, 0.0% nie, 0.0% idleMem: 1028356K av, 894896K used, 133460K free, 10888K shrd, 606324K buffSwap: 2048276K av, 0K used, 2048276K free 69508K ahedPID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND4



10957 mmartine 17 0 48364 47M 10704 R 99.9 4.7 1383m nwhem.luis10956 mmartine 16 0 48648 47M 11324 R 99.7 4.7 1368m nwhem.luis11863 edsott 9 0 948 948 764 R 0.1 0.0 0:00 topAnd during the Gmandel run:1:46pm up 50 days, 6:03, 1 user, load average: 12.73, 8.52, 6.0461 proesses: 34 sleeping, 27 running, 0 zombie, 0 stoppedCPU0 states: 99.0% user, 0.1% system, 0.0% nie, 0.0% idleCPU1 states: 100.0% user, 0.0% system, 0.0% nie, 0.0% idleMem: 1028356K av, 895104K used, 133252K free, 10888K shrd, 606324K buffSwap: 2048276K av, 0K used, 2048276K free 69544K ahedPID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND12448 edsott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12449 edsott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12451 edsott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12455 edsott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12457 edsott 20 0 784 784 532 R 11.7 0.0 0:02 mandel_pvm_a12446 edsott 19 0 784 784 532 R 10.7 0.0 0:02 mandel_pvm_a12450 edsott 20 0 784 784 532 R 10.7 0.0 0:02 mandel_pvm_a12447 edsott 18 0 784 784 532 R 9.8 0.0 0:02 mandel_pvm_a12452 edsott 20 0 784 784 532 R 7.8 0.0 0:02 mandel_pvm_a10956 mmartine 15 0 48648 47M 11324 R 6.8 4.7 1381m nwhem.luis10957 mmartine 14 0 48364 47M 10704 R 5.8 4.7 1395m nwhem.luis12453 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12454 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12456 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12458 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12459 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12460 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12461 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12462 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12463 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12464 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12465 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12466 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12467 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12468 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_a12469 edsott 20 0 784 784 532 R 5.8 0.0 0:02 mandel_pvm_aWhih is an unequal allotment of CPU time whih bene�ts programs whih ombinemessage passing with shared memory, in Beowulf lass lusters.3.4 Performane model3.4.1 Shared memoryIn the alulation of many types of fratals, as in the ase of the Mandelbrot and Julia sets,the time it takes depends on several fators. Over eah pixel of the image �or point of the5



grid� a series of iterations will be performed. The number of iterations per pixel is notknown beforehand. In fat, the number of iterations is the unknown to be solved to renderthe fratal image in olor. The time it takes one iteration on eah pixel is onstant, sine itonly depends on the number of �oating point operations performed and the proessor speed.This number of �oating point operations per iteration, whih we shall all c, determines aomputation time t = c/f where f is the number of �oating point operations per seond(FLOPS) that the proessor in question is apable of realizing.For a given grid determined by the seleted oordinates upon the omplex plane, thereexists a fration α of points for whih it annot be determined that the orbit esapes aftera ertain number of iterations.Let L = {L1, L2, L3, . . .} be an inreasing sequene of integer indexes. Let α = {α1, α2, α3, . . .}be the sequene of proportions of elements whose orbit does not esape for eah entry inthe sequene L. Then as Li → ∞, there exists a limit value α suh that αi → α. For anypoints whose orbital sequene esapes, we have that for almost all i the number of iterationsis stritly less than Li, and for those whose orbit does not esape the number an be reahed
Li. Therefore the omputation time is

t ≤ αicLi

f
+

(1 − αi)cLi

f
.And the time to alulate any point in the grid is less than or equal to cLi

f
. The maximumtime for the limit α > 0 is cwhLi

f
, where w × h are the grid dimensions.It an be seen that the value of α varies aording to the region of the omplex planethat is being examined, thus parameter α annot be known beforehand. On the other hand,the parameters w and h remain onstant while generating the fratal image. Therefore theonly parameter that an vary is Li, to resolve areas with more detail lose to the border ofthe Mandelbrot set.With respet to the shared memory omponent of Gmandel, all threads at upon thesame spae of memory. For this segment of alulation there exists a fration of pixelswhose orbit does not esape. To eah thread there orresponds an αi whih indiates thefration of points whose orbit does not esape. If eah proessor has an equivalent numberof points, then the α orresponding to L will be α =

∑

i αi, and the omputation time willbe determined by the proessor with the highest value for αi, being this time t ≤ αicL
f
.Analyzing the soure ode for the Mandelbrot set, it is easy to determine that c = 8 is theount of the �oating point instrutions. Analyzing the results that were generated in a twoproessor SMP omputer, and ignoring run times whih were too short, we obtain the resultsshown in table 1 where the value of the highest αi is also tabulated (sine this determinesthe aeleration). To ahieve the maximum aeleration, the ideal number of proessors isequivalent the the maximum of w y h, being that if it is w, the partitioning should be doneby olumns and if it is h the partitioning should be by rows. But sine any useful fratalimage should have at least a 300 pixel width, a SMP omputer whih ould provide themaximum aeleration would have to have 300 proessors �whih is a mahine that is verydi�ult to ome about. This shows that the shared memory approah an only be thoughtof as a partial solution to the problem of fratal image generation and that further workmust be done along the lines of message passing between di�erent omputers.6



L serial 2 threads aeleration αmax3200 11 6 1.8 0.5556400 21 13 1.6 0.62512800 42 28 1.5 0.66725600 85 51 1.7 0.58851200 170 83 2.0 0.500Table 1: Values of aeleration rates with respet to L.3.4.2 Message passingThe message passing approah is to do a double partitioning, one by olumns and one byrows. The message passing partition is done along the olumns of the grid. Eah remote PVMproess will do the alulations and send the results to the parent PVM proess to onformthe �nal image. Also, eah remote PVM proess will do a shared memory partitioning alongthe rows of eah olumn. This implies w messages of length 4h, using 32 bit integers. Thetime lost to lateny will be given by wλ. The time lost due to data length will be 4hβ, where
β is the bandwidth. The omputation time will be therefore marked o� by:

t ≤ wλ + 4hβ +
ᾱcLwh

fN
,where N is the number of PVM nodes and ᾱ is the maximum fration of points whose orbitdoes not esape for any of the remote PVM proesses.Sine w and h remain onstant, and λ and β are onstants that depend upon the hardware,we an write the generalizes onstants:

k1 = wλ + 4hβ

k2 =
whc

f
,with whih the mark-o� equation for omputation time beomes:

t ≤ k1 +
k2Lᾱmax

N
.Nevertheless eah remote PVM proess makes private use of shared memory to take advan-tage of the fat that they may be SMP nodes with two or more proessors available. Thusthe omputation time fator beomes:

t ≤ k1 +
k2Lαmax

nN
,where αmax refers to the maximum fration of points whose orbit does not esape thatorresponds to the threads for eah PVM proess and n i the number of proessors availableat eah omputer. With the results obtained on a Beowulf lass luster at the IMP (MexianInstitute of Petroleum) onformed by 125 dual Pentium-3 � 1 GHz onneted by swithed7



L time in seonds aeleration αmax proessors25600 6 14.2 0.070 2051200 10 17.0 0.059 20102400 20 17.0 0.059 20204800 40 17.0 0.059 2025600 2 42.5 0.024 8051200 3 56.7 0.018 80102400 7 48.6 0.021 80204800 12 56.7 0.018 8025600 1 85 0.012 14051200 2 85 0.012 140102400 4 85 0.012 140204800 7 97 0.010 140Table 2: Values of aeleration rates.Gigabit Ethernet, we obtained the following results with the values shown at table 2 for αmax.For the message passing senario with PVM, the optimum on�guration is with remote SMPnodes. The number of olumns would orrespond to the width of the array, w, and the numberof proessors on eah SMP node would equal the number of rows, h. A on�guration of thisnature would be extremely di�ult to ahieve. Nonetheless, the parameters of Gmandel anbe moved to aommodate any number of remote PVM nodes with any number of proessorsby node. This is done by toggling the values of remote heavyweight proesses and threadsper heavyweight proess.4 A voyage into the seldom explored Mandelbrot4.1 The generalized Mandelbrot setThe images in �gure 2 orrespond to the generalization of the Mandelbrot set. They referto the exponents q = 2 through q = 9, plus q = 13. One detail to notie is that the numberof bulbs grows. In the ase where q = 2, there is one large bulb, while with q = 3 there aretwo large bulbs. It is easy to see that the number of large bulbs will equal q − 1. Anotherinteresting detail is with the butt. The number of butts inrease with q and is equal to q−1.But there is always a butt on the positive x-axis, whih progressively gets smaller. Whathappens when q inreases without bound? In �gure 3 we may take a look at q = 30, 120, 1200.What's happening? The generalized Mandelbrot set tends to the unit irle as was pointedat the end of setion 1. And we must also reall the Mandelbrot is further tied to the irlewith the appearane of the irrational number π. This number, whih represents the ratioof the diameter to the irumferene of a irle, appears in di�erent manner, as shown byDave Boll [2, 4℄, and proved by Aaron Klebano� [11℄. This further ties the Mandelbrot set,and spei�ally the generalized Mandelbrot set, to an alternate de�nition of the onept of airle. This is so beause the irumferene is not really smooth, but an be as smooth as we8



Figure 2: Generalized Mandelbrot sets for q ∈ {2, . . . , 9, 13}.

Figure 3: Generalized Mandelbrot sets for q ∈ {30, 120, 1200}.
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Figure 4: Closest views at apploximatiosn of the unit irle.want it to be. This is nature's way to make irles sine the irumferene must eventuallyome down to atoms.But what does the smooth part of the Mandelbrot �irle� (q = 1200) looks like on en-hanement? A loser look an be taken at �gure 4, sequentially zooming in on the smoothestpart of the graph. Whih kind of reminds us of a gas bubbling through a liquid, ompletewith the bubbles bursting with a splash. Figure 5 displays two zooms at the splash. Andthen zoom in for two looks at the loudy part are displayed on �gure 6 Who would everguess that what looks like a irle is really what you observe above? Maybe only those whowork in quantum hemistry and who know there are no de�nite borders between atoms inmatter, only eletron louds.4.2 The generalized Julia SetJust as with the Mandelbrot set it is possible with the software to alter the exponent on theJulia iteration formula and generate interesting images. The two images shown on �gure 7orrespond to a Julia set with q = 5. and the two images on �gure 8 orrespond to a Juliasets with q = 13.4.3 The alpha generalized Mandelbrot setThe Alpha generalized Mandelbrot set also produes some very interesting images. Thetwo images of �gure 9 orrespond to an α = 50, q = (100, 2)-fratal. Or zooming into the
α = 50, q = (5000, 2)-fratal image, the four images shown at �gure 10 are obtained. Andeven further with the three images on �gure 11.
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Figure 5: Two zooms at the splash.

Figure 6: Two looks at the loudy part.
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Figure 7: Julia set with q = 5.

Figure 8: Julia set with q = 13
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Figure 9: An α = 50, q = (100, 2)-fratal.

Figure 10: Zooming the α = 50, q = (5000, 2)-fratal image.
13



Figure 11: Further zooming.

Figure 12: Details of the a α = 50, q = (2, 1129)-fratal.4.4 Statistis alulationMany of the above images an be alulated within reasonable time on a single omputerrunning Linux or FreeBSD. But some of the images take too long. For eah of the two imagesin �gure 12, for example, whih represent details of the a α = 50, q = (2, 1129)-fratal, theomputation time is more than twenty minutes on a Pentium-IV at 1.8 GHz, while usingthe PVM version of Gmandel with 100 dual Pentium-3 omputers onneted by a Gigabitswith, the image generation is ut down to only 11 seonds. While in the future proessorspeeds will most ertainly be able to math suh performane, in the meantime the use of aomputer luster allows a peek at the fratals to be generated on future generation desktopomputers.
14
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pqn(c) =

qn
−1

q−1
∑

i=0

Kq,n,1+i(q−1)c
1+i(q−1) ∈ N[c] (5)
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Thus pqn(c) has qn−1
q−1

+ 1 non-null oe�ients.Proof. Let us prove it by indution on n.Base ase. For n = 0 we have pq0(c) = c, whih is learly of the form (5) with Kq01 = 1.Indutive ase. Let n > 0 and suppose that equation. (5) holds for n− 1. Let us prove it for
n. We observe that the addition of q numbers ongruent with 1 modulus (q − 1), i.e. of theform 1 + ij(q − 1), j = 1, . . . , q, is of the form

∑

j

(1 + ij(q − 1)) = q +

(

∑

j

ij

)

(q − 1) = 1 +

(

1 +
∑

j

ij

)

(q − 1)i.e. it is also ongruent with 1 modulus (q − 1). Thus by expanding (pq,n−1(c))
q + c we getan expression of pqn(c) of the form (5).Remark 2 The oe�ients (Kq,n,1+i(q−1)

)
qn
−1

q−1

i=0
an be alulated reursively:

Kqn1 = 1

Kq,n,1+k(q−1) =
∑

{

q
∏

j=1

Kq,n−1,1+ij(q−1)

∣

∣

∣

∣

∣

q
∑

j=1

ij = k − 1

} (6)Proof. It follows just by expanding pq,n(c) = (pq,n−1(c))
q + c.Remark 3 For every integer q ≥ 2, and every n, m ∈ N, if m ≥ n then Kq,n,1+n(q−1) =

Kq,n,1+m(q−1). In other words, the n-th polynomial �xes the value of the n-th oe�ient inall subsequent polynomials.Thus, if the sequene {Zn(0, q, c)}n≥0 is onvergent its limit value an be expressed by theseries:
S(q, c) =

∑

n≥0

Kq,n,1+n(q−1)c
1+n(q−1) (7)Remark 4 The number rq introdued in eq. (4) is the radius of onvergene of series S(q, c)in eq. (7). The sequene {rq}q≥2 starts with the value r2 = 1

4
, is inreasing and besides

limq→+∞ rq = 1.In table 3 we sketh a few approximated values in the sequene {rq}q≥2, obtained from ouralulations of the orresponding q-Mandelbrot set.B Calulation of radii rqWhen q = 2, the minimum irle whih is ontained entirely within the Mandelbrot set isdetermined by a real number r2 = 0.25, indeed the point (0.25,0) is the losest to the originin the border of M2. As the order of the generalized Mandelbrot set is inreased, a sequene16



q rq sq2 0.25 0.253 0.38490 0.14814810 0.696837 0.038742100 0.945003 0.0036971000 0.992116 0.00036820000 0.999455 0.000018Table 3: Some values of rq and sq.of real numbers appears whih determines the maximum irle ontained within the set. Theratio of this irle an be expressed in the form rq = s
1

q−1

q . On the other hand, the radiusof the minimum irle ontaining the set is determined by the term 2
1

q−1 . Sine there aroseindeed the unit roots, as the order of q inreases the verties at the border within a distaneof rq to the origin on the omplex plane form a regular (q − 1)-gon. The table 3 indiatessome values of rq and sq. Sine every positive real number has at least one real and positive
(q − 1)-th root, a spike re�eting the minimum value of rq always appears on the positivereal axis. When q = 2 there is only one spike. When q = 3, two spikes orresponding tothe square roots of s3 show a symmetry with respet to the origin. On q = 4, the threespikes orrespond to the three ube roots of s4. In general, there always will be q − 1 spikes,symmetrially plaed around the origin. Sine the distane to eah of these to the origin isthe same, it is su�ient to analyze the behavior of the spike on the positive real axis. Thissimpli�es the problem greatly sine we move from a sequene in C to R.Let us examine what happens when q → ∞. There are two ases. Case 1 is when x0 ≥ 1,and ase 2 is when 0 < x0 < 1.Case 1: x0 ≥ 1. x1 = limq→∞(x0)

q + x0 = ∞. Nothing more needs to be said.Case 2: 0 < x0 < 1. 1
n

= x0 : n > 1. x1 = limq→∞( 1
n
)q + 1

n
= 1

n
. By indution

xi = 1
n
∀i ≥ 0. But 1

n
< 1 < ∞, therefore the sequene onverges for all values of x0 < 1.This implies that the limit of the Mandelbrot set when the exponential q → ∞ is nothingless than the unit irle on the omplex plane.
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